

High Efficiency Compact Electric Tankless Water Heater

98%+ efficient, easy to install and operate. Available up to 54 kW in single or three phase voltages

Instantaneous design reduces stand-by heat loss and significantly lowers operating costs compared to traditional storage systems

Constructed with high-grade materials to ensure long operating life

- Factory packaged heater provides trouble-free installation and operation
- Engineered for your specific application to ensure reliable operation
- Wide selection of sizes to meet the needs of even the most demanding application

Applications

Process systems, wash downs, boiler systems, freeze protection, heat transfer systems, supplemental heat, and much more.

Tankless water heater for commercial and industrial use

The Hubbell Tankless HX/TX electric water heater is highly reliable and easy to maintain. The HX/TX is compact, extremely efficient, takes up minimal space, and reduces operating costs.

Over 100 years of water heating expertise

Hubbell water heaters are the right choice for your commercial and industrial applications. We have water heating solutions for most energy sources with storage capacities from 1–10,000 gallons — all designed, engineered, and manufactured for reliability and longevity coupled with unparalleled support and service.

Inside the Tankless HX / TX

The Hubbell Tankless HX/TX uses only the power needed to heat water on demand, while delivering an accurate and consistent water temperature. The controller continually processes the flow rate along with the inlet and outlet temperature to determine the amount of energy needed to achieve the desired water temperature. Fast-acting TRIACS modulate the heating elements to the precise level needed to meet the demand.

Technical Features

Temperature Controller

A sophisticated electronic temperature controller with LED digital display provides the user interface. The temperature controller processes all flow and temperature data and calculates the precise amount of power needed to meet demand.

Operator Control Capabilities				
Power Limiting	This feature allows the user to limit the kW rating of the unit by a specific percentage and effectively lower the total amp draw of the unit.			
Diagnostics	Display inlet and outlet temperatures, flow rate and error codes to assist in troubleshooting.			
Cost Calculator	Determine the exact cost of operating the heater. Input your cost per kW·Hr and the controller displays total kW·HRs consumed, total cost of operation, and total hot water usage (shown in gallons or liters).			
Temperature Control	Set the digital display to the desired water temperature in °F or °C. Fully adjustable in 1° increments from 32–194°F (0–90°C). A user adjustable +/– 3° calibration feature provides additional control for superior accuracy.			

Full Heater Modulation

Each heating element is switched on/off using a fast acting solid state TRIAC with zero cross over firing control. This switching action provides full modulation of each heating element, ensuring that the precise amount of heat is added to meet demand. To improve operating efficiency and component longevity, each triac is mounted to a heat sink located on the incoming supply piping so that heat generated by the TRIAC during the switching process is dissipated into the water.

Proper Power Integrity

All Hubbell Tankless water heaters, including all 3 phase models, are engineered to operate as a balanced load and operate at 0.999 Power Factor. All Hubbell 3 phase models are designed for 3 wire (3 live, 1 ground) and 4 wire power systems and draw equal current across all conductors to maintain the power integrity of the users electrical system. Hubbell does not recommend the use of heaters that operate as an unbalanced load. All load switching in Hubbell tankless models is performed as zero cross over, eliminating phase angle firing interference and associated EMI issues.

Full Resource Staging

The Hubbell Tankless control system ensures that usage is equalized across all heating circuits. To achieve this, once the controller has calculated the precise amount of kW required, all circuits are energized proportionally and independently energized and then time staggered between circuits. This full resource staging reduces EMI output, increases component longevity, and provides highly accurate and consistent hot water temperatures. For three phase models, all circuits are fully modulated and synchronized to operate as a balanced load.

BACnet Module

The Hubbell BACnet interface unit implements BACnet MS/TP protocol. The device comes from the factory ready to be operated. The unit can be reconfigured easily with a USB cable and the BACnet Network Utility program located on the Hubbell web page. The BACnet includes features such as set temperature, power limiting, power setting, temperature in and out, flow rate, flowmeter error and leak detections. Note that internet protocol is not supported.

A HUBBELL

HUBBELL TANKLESS HX/TX

Heater Specifications

Heating Chamber	Copper and Bronze
Capacities	8–54 kW
Orientation	Wall Mounted
Voltages	208-600 Volt, 50/60 HZ
Phases	1Φ or 3Φ (balanced)
Power Factor	0.999
Thermal Efficiency	98% +
Inlet / Outlet Size	TX: 3/4" Push Fit, HX: 1" Push Fit
Min/Max Flow	
ТХ	0.2 GPM Min, 8.0 GPM Max
НХ	0.5 GPM Min, 40 GPM Max
Max Inlet Temp.:	150°F
Thermostat Range	32–194°F / 0– 90°C
Hi-Limit	200°F (Fixed temperature)
Design WP	150 psi
Design TP	300 psi
Elements	Incoloy 800
Standby Power	< 3 Watts
Heating Chamber Warranty	5 Year
Electrical Warranty	1 Year
Enclosure	Stainless Steel Brushed Finish
Approvals	ETL, ANSI/NSF 5

Note:

See <u>TXA brochure</u> for:

- Type 316L stainless steel heating chamber for added corrosion resistance
- Heating chamber built to ASME Section VIII and UM stamped

kW and Amperage Selection Charts

2 Element

(Amperage shown in chart below indicates available models)

	2 Element				
kW	1 Phase Voltages				
Rating	208	240			
8	38	33			
11		46			
12	58				
14	67	58			
16		67			
18		75			

3 Element

(Amperage shown in chart below indicates available models)

	3 Element						
kW	1 Phase	Voltages	3 Phase Voltages				
Rating	208	240	208	240	480	600	
8					10		
11			31				
12		50	33		14		
14				34			
16	77		44	39			
18	87		50		22		
20	96		56				
21		88		51	25	20	
24		100		58	29	23	
27		113		65	33	26	

kW and Amperage Selection Charts

6 Element

(Amperage shown in chart below indicates available models)

	6 Element					
kW	1 Phase	Voltages	3 Phase Voltages			
Rating	208	240	208	240	480	600
24	115		67			
31	149		86			
33		138		79		
35						34
36	173		100	87	43	
40	192		111			39
42		175		101	51	40
48	231	200	133	116	58	46
50						48
54		225		130	65	52

Heating Capacity

kW	Heating Capability in GPM at F° Temperature Rise (°FΔT)									
Rating	20°F ΔT	30°F ΔT	40°F ΔT	60°F ΔT	70°F ΔT	80°F ΔT	100°F ΔT	110°F ΔT	120°F ΔT	140°F ΔΤ
8	2.73	1.82	1.36	0.91	0.78	0.68	0.55	0.50	0.45	0.39
11	3.75	2.50	1.88	1.25	1.07	0.94	0.75	0.68	0.63	0.54
12	4.09	2.73	2.05	1.36	1.17	1.02	0.82	0.74	0.68	0.58
14	4.78	3.18	2.39	1.59	1.36	1.19	0.96	0.87	0.80	0.68
16	5.46	3.64	2.73	1.82	1.56	1.36	1.09	0.99	0.91	0.78
18	6.14	4.09	3.07	2.05	1.75	1.54	1.23	1.12	1.02	0.88
20	6.82	4.55	3.41	2.27	1.95	1.71	1.36	1.24	1.14	0.97
21	7.17	4.78	3.58	2.39	2.05	1.79	1.43	1.30	1.19	1.02
24	8.19	5.46	4.09	2.73	2.34	2.05	1.64	1.49	1.36	1.17
27	9.21	6.14	4.61	3.07	2.63	2.30	1.84	1.67	1.54	1.32
31	10.58	7.05	5.29	3.53	3.02	2.63	2.12	1.92	1.76	1.51
33	11.26	7.51	5.63	3.75	3.22	2.81	2.25	2.05	1.88	1.61
36	12.28	8.19	6.14	4.09	3.51	3.07	2.46	2.23	2.05	1.75
40	13.65	9.10	6.82	4.55	3.90	3.41	2.73	2.48	2.27	1.95
42	14.33	9.55	7.17	4.78	4.09	3.58	2.87	2.61	2.39	2.05
48	16.38	10.92	8.19	5.46	4.68	4.09	3.28	2.98	2.73	2.34
54	18.42	12.28	9.21	6.14	5.26	4.61	3.68	3.35	3.07	2.63

Notes

Alternate voltages including 277, 380, 415, 440 and 575 volt available. Please consult factory for exact kW availability in these voltages.

Specify Tankless HX due to high flow rate

Variables to Solve For

Step 1: Solve for the unknown using the formulas below.

kW Requirement:

_____GPM x ______°FΔT x 0.1465 = _____ kW

Temperature Rise:

_____kW x 6.824 ÷ _____GPM = _____°FΔT

Flow Rate:

kW x 6.824 ÷ _____GPH

Step 2: Choose the Tankless model with the kW rating which meets the peak demand (GPM) and required temperature rise ($^{\circ}F\Delta T$) for your application.

Step 3: Choose the voltage and phase power supply available. Note the total amperage draw of the unit and verify availability.

Voltage De-Rating Factors

Rated Voltage	Applied Voltage	De-Rating Factor
600 V	575 V	92%
600 V	550 V	84%
480 V	460 V	92%
480 V	440 V	84%
240 V	230 V	92%
240 V	220 V	84%
240 V	208 V	75%

When the actual supply voltage (applied voltage) is different than the design voltage (rated voltage) the resulting kW output will be affected. Please see the chart for typical voltage de-rating factors, or use the following formula.

Applied Voltage²

Rated Voltage² X Rated kW = kW output at applied voltage

Tankless HX/TX Model Number Designation

	See po	ages 5–6 for available kV	t combinations.		
MODEL	KW RATING	NUMBER OF HEATING ELEMENTS	VOLTAGE / PHASE		OPTIONAL EQUIPMENT
HX =	008 – 054	2	RS = 208/1	Balanced 3Φ	Write/type optional
0.5 GPM Min		3	S = 240/1	R = 208/3	equipment code in the gray
40 GPM Max		6		T = 240/3	box below in alphabetical order. For multiple options
TX =				T3 = 380/3	separate codes with
0.2 GPM Min				T7 = 415/3	a dash (–).
8.0 GPM Max				T5 = 440/3	
				T4 = 480/3	
				T6 = 600/3	

Example: TX024-3T4-C35

A Hubbell Tankless electric water heater rated at 24 kW with 3 heating elements and powered with 480 volt, three phase, 60 Hz. With optional BACnet commuication module with T1000 digital controller.

Optional Equipment

Note: Optional equipment must be called out in the written specifications, use the codes below.

Controller

- **C35** BACnet communication module with T1000 digital controller
- **C51** Remote Control Display allows the heater to be installed in a remote location. The 3" x 5" NEMA 4 display enclosure can be located up to 25' from the heater

General

- **G3** Enclosure Heater (Specify minimum temperature expected)
- **G9** Explosion resistant construction (Specify Class, Division, Group, Temperature Class)
- G16 NEMA 4 or NEMA 4X rating

Please note: Optional equipment may impact overall dimensions and weight. Please request submittal drawing from factory.

Available Accessories

Tankless Valve Kit: Inlet and outlet valve assembly simplifies installation. Includes unions, shut offs, check valve, drain ports and pressure relief valve. For 3/4" order part number "LFTWH-UT-HC" For 1" order part number "TANKLESS VALVE KIT 1"

Fill out form below to order accessories.

10-year Warranty: 10-year non pro-rated tank warranty. Order part number "VESSEL WARRANTY"

Thermostatic Mixing Valve: ASSE 1070 code compliant Thermostatic mixing valve to increase the amount of hot water available. Valve is $\frac{1}{2}$ " (-UT) size and adjustable from $80-120^{\circ}$ F. Typically used when supplying hot water to multiple lavatories from a single water heater. Order part number "LFMMVM1-UT"

Accessories Name	Part #
Accessories Name	Part #
Accessories Name	Part #

All information is subject to change without notice. Consult factory for submittal drawings.

H1052-C-20250606